

Paths of A Million People: Extracting Life Trajectories from Wikipedia

Ying Zhang*, Xiaofeng Li*, Zhaoyang Liu, and Haipeng Zhang†

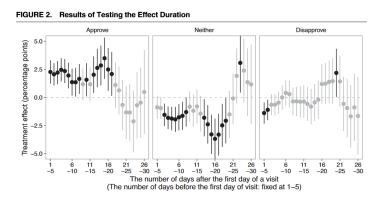
章颖*、李笑风*、刘昭阳、张海鹏†

ShanghaiTech University

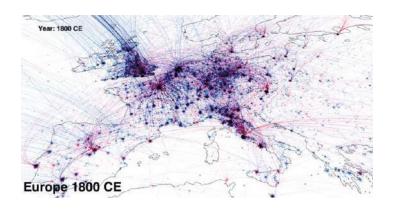
Paper

上海科技大学

June 24, 2025



Me



Motivation

• Life trajectories of notable individuals have crucial implications

Politics (Goldsmith et al., 2021)

Cultural History (Schich et al., 2014)

Motivation

- Life trajectories of notable individuals have crucial implications
- Trajectory data is scarce in terms of volume, density, and inter-person interactions
 - Usually <10 k footprints on record
 - Only a few-dozen trajectory types
 - Intermediate points unlock network-level analysis

Motivation

Life trajectories of notable individuals have crucial implications

維

 Trajectory data is sca interactions

Usually <10 k foc

Only a few-dozer

Intermediate poil

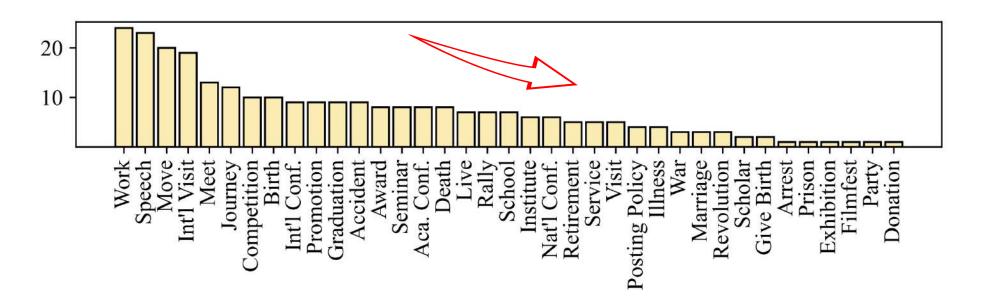
e, density, and inter-person

7ikipediA The Free Encyclopedia vel analysis

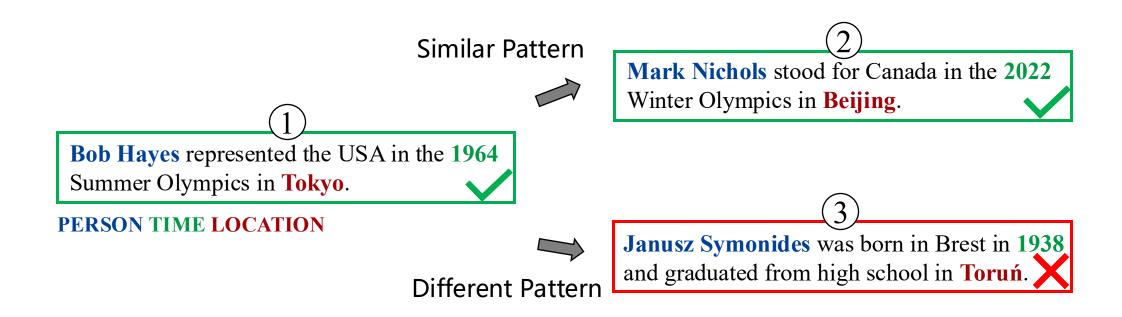
Wikipedia has millions of biography pages, with abundant trajectory information

Problem Statement

- Life trajectory is consisted of three elements (Person, Time, Location)
- Formulation: Given the context, extract life trajectories by classifying the relevant triplets



Triplet: (PERSON TIME LOCATION)

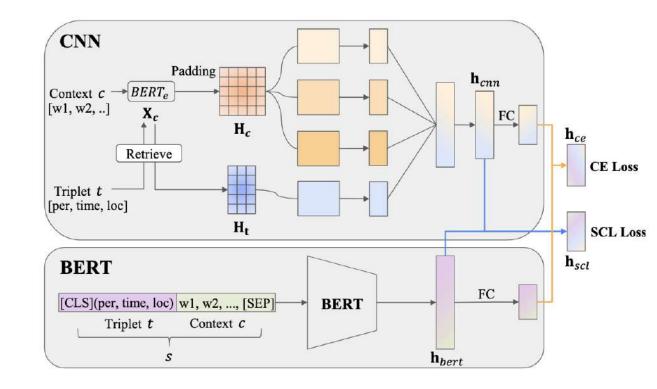

Challenges

- More than 35 types are observed in just 10 random biographies
- Total 1,930,519 biography pages on Wikipedia
- How to generalize to long-tail data?

Similarity vs. Dissimilarity

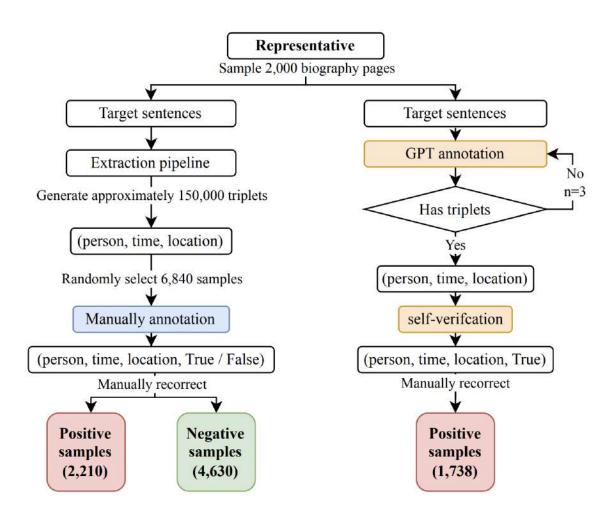
Bob Hayes represented the USA in the 1964
Summer Olympics in Tokyo.

More samples in the wild ...



COSMOS

Classification: Given (Person, Time, Location)
 t and its context p


$$f: \{t, p, \Theta\} \to y$$

- Use contrastive-learning to capture intrasample relation
- Use semi-supervised learning to expand the training data during model training

Dataset

- Develop a preprocess tool to mine candidate triplets
- 2. Construct a benchmark dataset
 - Representative -> Accuracy
 - Regular -> Coverage

Experimental Result

84.61 74.08 81.45 **77.59**

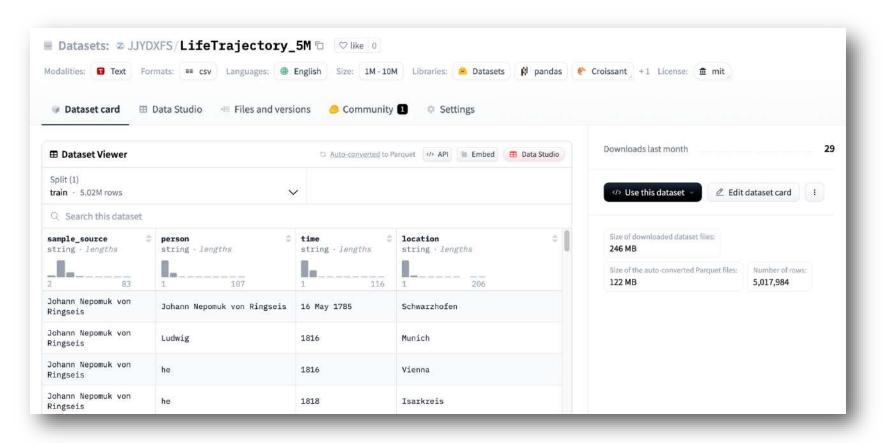
95.52

Compared to seven baselines

COSMOS

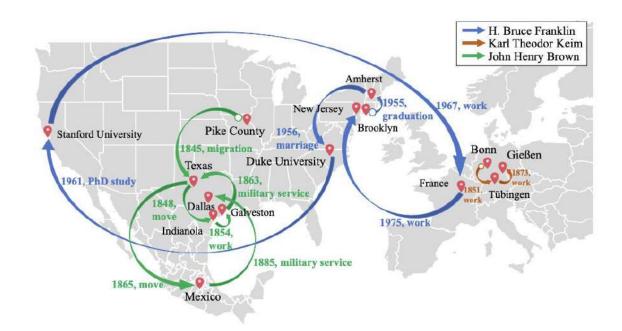
86.79 84.41 87.54 **85.95**

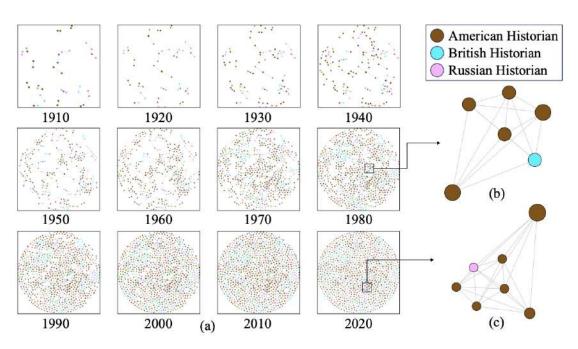
COSMOS exhibits better generalization ability


82.11 0.8169 ± 0.0906

COSMOS achieves the best overall performance		eves _												
		ance	Representative				Representative _m				Representativeg	Regular		-
	_		Acc (%)	P (%)	R (%)	F1 (%)	Acc (%)	P (%)	R (%)	F1 (%)	R (%)	R (%)	Avg-R (std)	
		GPT-3.5	63.99	56.53	95.12*	70.91	55.00	41.48	91.39*	57.06	100.00*	92.33*	0.9126 ± 0.071	6
	LI	R (TFIDF)	74.47	75.45	66.24	70.55	75.67	62.62	63.64	63.13	69.64	44.52	0.4262 ± 0.175	1
		CeleTrip	82.55	81.77	80.05	80.90	81.31	70.26	74.33	72.24	87.54	60.94	0.5614 ± 0.235	1
	I	Bi-LSTM	84.38	81.38	85.77	83.52	81.94	69.66	79.37	74.20	94.16	75.18	0.7549 ± 0.203	1
		CNN	84.42	84.91	80.55	82.67	82.62	74.08	72.10	73.08	91.63	63.50	0.6344 ± 0.211	.1
		BERT	84.65	80.10	88.80	84.23	82.08	68.39	84.12	75.44	94.94	81.02	0.8304 ± 0.139	8
	F	RoBERTa	<u>86.09</u>	82.88	88.04	<u>85.38</u>	<u>83.68</u>	71.94	82.19	<u>76.73</u>	95.71	77.00	0.7389 ± 0.158	3

Millions of Extracted Life Trajectories

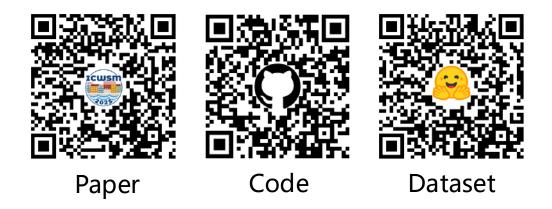

- From experiments to practice
- From 1,930,519 biographies to 5,017,984 life trajectory triplets



Life Trajectory of Historians

- 20,786 trajectory triplets of 8,272 historians
- Types: born / die / move / study / teach / marry / graduate / work ...

Individual-level Trajectory Visualization



Group-level Trajectory Interaction

Summary

- Propose a task of life trajectory extraction, and our framework, COSMOS, for this task
- Release our labeled dataset, million-level extracted trajectories and open-source our framework

Thanks.

