

Where Did the President Visit Last Week? Detecting Celebrity Trips from News Articles

Kai Peng*, Ying Zhang*, Shuai Ling, Zhaoru Ke, and Haipeng Zhang†

彭凯*、章颖*、凌帅、柯昭如、张海鹏†

Paper

Code&Dataset

ShanghaiTech University

上海科技大学

June 05, 2024

Where did Donald Trump visit on 2017-01-26?

When and where a celebrity appears means a lot

When and where a celebrity appears means a lot

• Understand Policy Tendency [Doherty2009]

Trump held campaign rally in Phoenix

- Arizona is an important swing state
- Phoenix is the largest city of Arizona

When and where a celebrity appears means a lot

• Analyze International Relations [Cavari2019]

Merkel attended EU meetings in Brussels

- Brussels is the headquarters of the EU
- Trip to Brussels bolstered Germany-EU ties

Related Work

- Existing work analyzes the travel patterns of celebrity [Doherty2009], [Deville2014], [Toplak2017]
- Available trip data is scarce
 - Limited Volume and Coverage POTUS
 - Low Update Frequency Once a Year (MOFA of Japan)
 - Time Range 1906 to 2016
- There lacks work focused on extracting celebrity trip data

Problem Statement

- Celebrities' travel information often mentioned in news
- Our Goal: Extract celebrity trips from news articles

Where did Donald Trump visit on 2017-01-26?

A Plausible Intuition

... *Trump* just ... increasing ... Jim Kenney ... *Trump* ... **Chicago** ... *Trump* ... **Afghanistan** ... Chicago ... Rahm Emanuel ... **Washington** ...

.....

... *Trump* visited ... during a retreat in **Philadelphia** ... Washington ... *Trump* ... Mike Pence ...

News related to Trump on 2017-01-26

Candidate Locations

Philadelphia

••••

Washington, D.C.

Trip Information

Donald Trump

Classify

2017-01-26

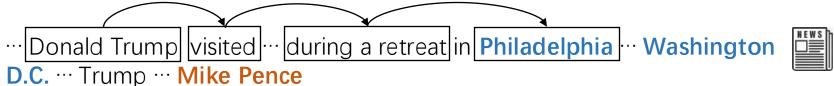
Philadelphia

Person-Related Event Detection

- Person-Related Event Detection (PRED)
 - Using social media (tweets)
 - Focus on life event^[Yen2021]: marriage and graduation etc.
- Traditional ML-based PRED[Dickinson2015, Khodabakhsh2018]
 - Manual feature engineering/Ignore the order of words
- Deep Learning PRED
 - Use CNN^[Nguyen2017] and Bi-LSTM^[Yen2018] to model single document/sentence
 - Capture semantics within short sequence

Challenges

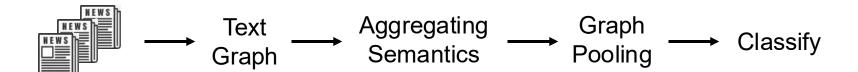
- Trip descriptions scattered within and across articles
 - Average of 23 articles per Trump trip



- Irrelevant celebrities and locations in the news
- Implicit trip: celebrities\locations are not directly mentioned by names

Graph Neural Network

- Graph Neural Network (GNNs)
 - Used to capture long-range dependency on text tasks^[Peng2018]
- → Capture the scattered semantics in our scenario (Challenge 1)



 Common pooling methods are global pooling, which summarizes the entire graph

Challenges

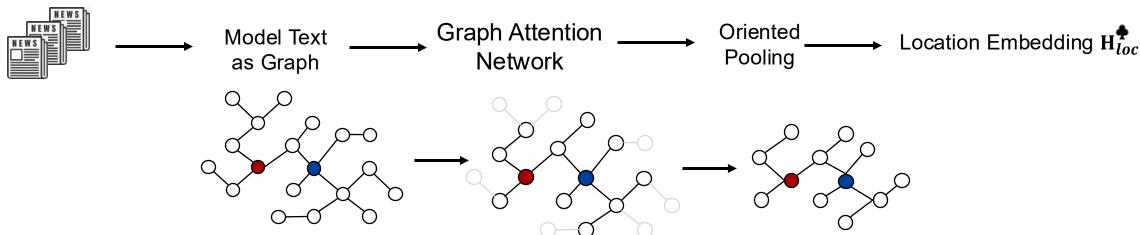
- Trip descriptions scattered within and across articles
- Irrelevant celebrities and locations in the news
 - Even worse when examining multiple articles

```
··· Donald Trump visited ··· during a retreat in Philadelphia ··· Washington
D.C. ··· Trump ··· Mike Pence ··· Chicago ··· Jim Kenney ···
```


Implicit trip: celebrities\locations are not directly mentioned by names

Word-Article Graph for Modeling Text

- Word-Article Graph
 - → Challenge 1: Descriptions of trip are scattered
 - Model text as graph
- Oriented Pooling for Graph
 - → Challenge 2: Interfering celebrities and locations in text
 - Sample sub-graph based on node similarity (target celebrity\location)



Challenges

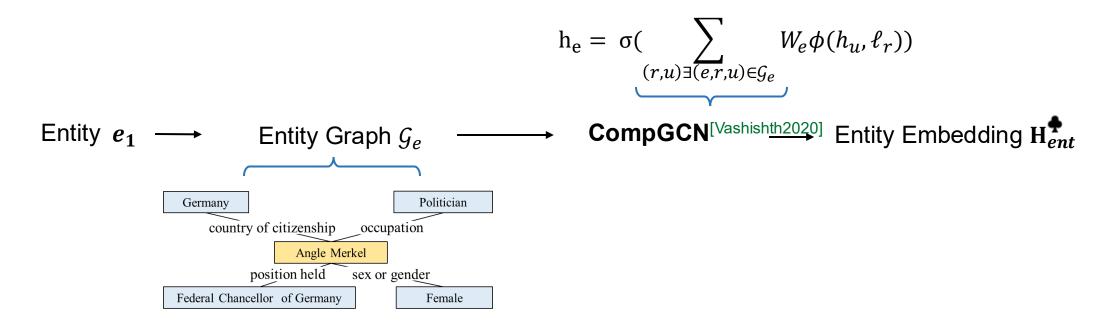
- Trip descriptions scattered within and across articles
- Irrelevant celebrities and locations in the news
- Implicit trip: celebrities\locations are not directly mentioned by names

··· President of the United States visited ··· during a retreat in Philadelphia ··· Washington D.C. ··· Trump ··· Mike Pence

- → Introducing relationships of knowledge entity
- Pre-trained embeddings can not capture the latest status of specific event entity
- → Introducing the sentences from recent news

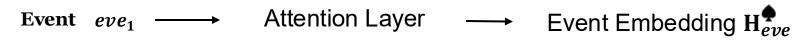
Entity Sub-graph for Introducing Knowledge

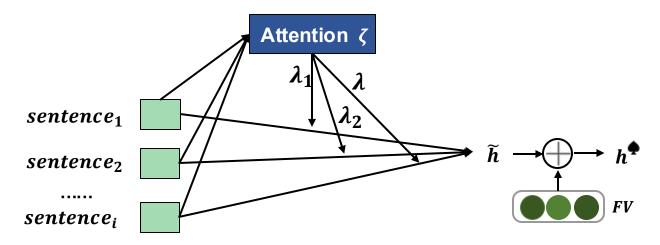
- Learning Entity Relationships
 - Construct sub-graph for each entity



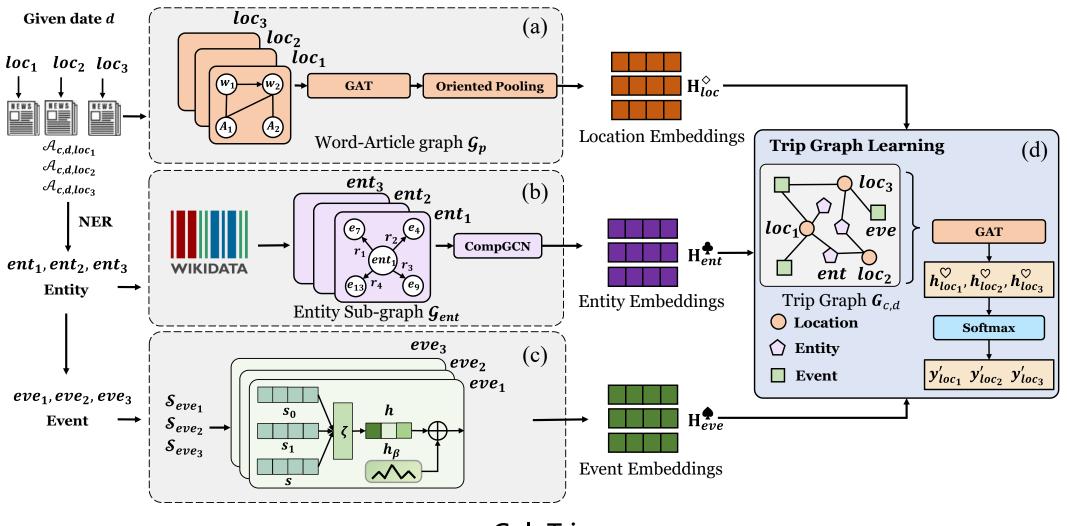
- Capturing the latest status of event
 - Sentences from news published around the target date

··· the 60th GRAMMY Awards will take place at New York City's Madison Square Garden on Sunday, Jan. 28, 2018.





Joint Learning on One Graph



Experiment

- Ground Truth Dataset
 - Label 2,000+ positive trips/9,000+ negative trips

Celebrity	Location	Date	Articles	Label
Donald Trump	Langley	01/21/2017	$\mathcal{A}_1, \mathcal{A}_2, \dots$	Positive

Table 1

• Split the dataset by date: 66.5% and 33.5%

Trip Dataset	Positive	Negative	Period
Train	1,715	6,341	01/01/2016 - 06/30/2019
Test	689	3,366	07/01/2019 - 02/28/2021

Table 2

Experimental Result

Baselines from Person-Related Event Extraction

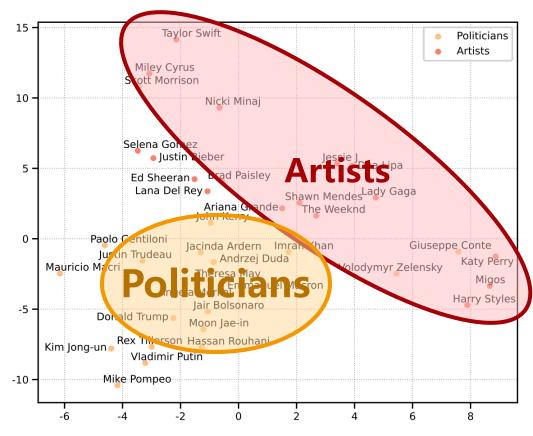
The actually visited locations that are correctly classified

The predicted trip location that are actually visited by celebrities

Methods	F1 (%)	P (%)	R (%)	Acc (%)			
LocFre	37.34	39.06	35.76	81.96			
LocJaccard	40.65	40.59	40.53	85.37			
LR (TFIDF)	64.65	88.64	52.83	90.69			
CNN	63.75	66.46	61.25	89.72			
Bi-LSTM	66.93	71.95	62.55	90.26			
GCN	60.18	60.71	59.65	86.58			
CeleTrip w/o kn	74.11	78.89	69.88	92.04			
With External Knowledge							
LR (TFIDF)	68.50	84.14	57.76	91.29			
CNN	69.85	79.08	62.55	90.83			
Bi-LSTM	70.68	81.71	62.26	91.22			
GCN	64.70	71.94	58.78	89.10			
CeleTrip	82.53	86.17	79.27	94.30			

Performance Evaluation

Learnt Representations of Celebrities

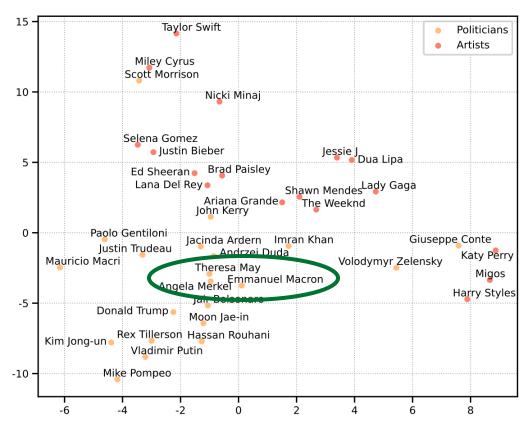


Visualization of the representations for celebrity entities (t-SNE)

- Artists in the upper-right
 - Sparse Solo Concert
- Politicians in the lower-left
 - Clustered International Conference

ShanghaiTech University

Learnt Representations of Celebrities



Visualization of the representations for celebrity entities (t-SNE)

- Merkel, May and Macron are closer
 - Guess: Regional Meetings
- Learnt representations are suitable for trip detection task

ShanghaiTech University

Summary

- Propose a task of celebrity itinerary detection, and our framework, CeleTrip, for this task
- Design Word-Article graph and Oriented Pooling to refine the graph and focus on nodes of interest
- Release our labeled dataset and open-source our framework

Thanks.

